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Introduction 
 
The purpose of this whitepaper is to provide a framework for understanding the role that 
Verification and Validation (V&V), Uncertainty Quantification (UQ) and Risk 
Quantification, collectively referred to as VU, is expected to play in modeling nuclear 
energy systems.  We first provide background for the modeling of nuclear energy based 
systems.    We then provide a brief discussion that emphasizes the critical elements of 
V&V as applied to nuclear energy systems but is general enough to cover a broad 
spectrum of scientific and engineering disciplines that include but are not limited to 
astrophysics, chemistry, physics, geology, hydrology, chemical engineering, mechanical 
engineering, civil engineering, electrical engineering, nuclear engineering material 
science, etc.  Finally, we discuss the critical issues and challenges that must be faced in 
the development of a viable and sustainable VU program in support of modeling nuclear 
energy systems. 
 
Background for Modeling Nuclear Energy Systems 
 
Nuclear energy systems and their associated fuel cycles involve complex, interacting 
subsystems whose modeling requires expertise that span many scientific and engineering 
disciplines. The key stages of a nuclear fuel cycle include mining and milling, 
conversion, enrichment, fuel fabrication, power production, temporary spent fuel storage, 
separations, and nuclear waste disposal. Whether the fuel cycle is open or closed, fuel 
type and reactor type will determine which of these stages come into play and the specific 
nature of each stage. A heavy reliance on computational simulation of each of the fuel 
cycle stages has historically played a major role in the advancement of nuclear energy, in 
particular the stages of power production, separations and nuclear waste disposal. The 
validation of these computational simulations has been based upon an extensive array of 



experiments, ranging from basic physics experiments, e.g. nuclear data, to single effects 
experiments, to integral system level experiments. Collectively these experiments have 
cost tens of billions of dollars and been executed over several decades. However, there 
still remain gaps in the experimental basis in areas such as severe accidents and aging. 
 
Using the experimental base, it has been possible to improve simulation capabilities via 
model, numeric and input data enhancements. In more recent years, it has also been 
possible to estimate the uncertainties in best estimate predictions. This has been done by 
mathematically propagating the uncertainties in input data, initial conditions and sub-
models through simulators. This process has been accepted by the USNRC as indicated in 
the Code Scaling, Applicability and Uncertainty (CSAU) methodology. However, since 
current nuclear system simulation most times are not based upon micro-scale science 
based models but macro-scale models, i.e. heat transfer sub-model, the number of 
parameters for which uncertainties must be treated is limited, e.g. fifty. 
 
As simulation capability is developed to be more science based, a heavier reliance on 
micro-scale sub-models will evolve. Given that designers require macro-scale responses 
to make informed design decisions, this implies that increased usage of multiscale 
modeling will be necessary. Further, since nuclear energy systems like any complex 
system involves the interaction of many physical phenomena, tightly coupled, 
multiphysics modeling will also play a more significant role in the future. To support the 
development of multiphysics and multiscale modeling, new VU capabilities will be 
necessary. A portion of this new capability required will be possible based upon advances 
in computational power, but others will require advances in the mathematical and 
algorithmic foundations of VU. 
 
For nuclear energy systems, the motivation for completing VU is two fold. The obvious 
reason is to provide users of simulation packages confidence in the system responses 
predicted and knowledge of prediction uncertainties. However, for nuclear energy 
systems VU is also performed because it is required by the licensing body, specifically 
the US Nuclear Regulatory Commission, built upon the premise of an extensive 
experimental data base regarding system attributes of interest. 
 
VU has as its objective to be able to predict with confidence, using models captured in 
computer simulation, the best estimate values and their associated uncertainties of 
complex system attributes, accounting for all source of error and uncertainty, i.e. 

– modeling, 
– numerical treatment, 
– epistemic uncertainties (e.g. data including correlations),  
– aleatory uncertainties (random phenomena), and 
– Initial, e.g. state condition, and boundary, e.g. domain decomposition, 

conditions. 
If this objective is satisfied, it will support the following favorable outcomes: 

• To make confident, risk-informed decisions when considering alternative designs 
and operations, and nuclear safety. 

• More specifically to support 



– the identification of code development needs, 
– the identification and design of required validation experiments, 
– design decision making in regard to managing margins, and 
– presenting the risk-informed safety case with the regulatory body. 

A challenge when VU is applied to nuclear systems is that it must be able to predict high-
impact consequences of low probability events with high confidence, factoring in aging 
effects, with limited experimental data at the macro-scale. This challenge is noted to be 
similar to that associated with nuclear weapons’ stewardship. 
 
Nuclear System Models’ Attributes 
 
Given the diversity between the stages of the nuclear fuel cycle, there is considerable 
diversity in the associated simulation models.  An example using the power production 
stage of the nuclear fuel cycle will serve to indicate the complexity of nuclear systems 
simulation models. To model a nuclear power plant, which includes the mechanical, 
electrical and nuclear components and systems, structures, and external environment, the 
following must be modeled: thermal-hydraulic behavior of fluid circuits including fluid-
structure interactions, thermal behaviors of components making up the system, material 
behaviors factoring in radiation, temperature, pressure, and chemistry effects, structural 
responses, instrumentation responses, control and protection systems logic, reactor 
physics and radiation fields. It is recognized that weak to strong coupling exists between 
these effects due to natural or engineered feedback effects. Today, with capabilities 
reflected in such simulation packages as TRACE, TRAC, RELAP and SASSYS codes, 
one is limited in not only modeling detail, but also the degree of coupling that can be 
represented. Introducing science-based multiphysics and multiscale modeling will only 
make these challenging modeling problem orders of magnitude more challenging with 
regard to best estimate calculations. 
 
Overview of Critical Elements of V&V and Uncertainty 
Quantification 
 
It is useful to state the definitions. 
 

Verification: Verification is the process of confirming that a computer code 
correctly implements the algorithms that were intended.  This is the process of 
confirming that the equations are numerically solved accurately. 

Validation: Validation is the process of confirming that the predictions of a code 
adequately represent measured physical phenomena. This is the  process of 
confirming that the equations are (physically) accurate. 

    Verification 

Code verification is the most general component of V&V. It answers, or seeks to answer, 
three specific questions: (1) Are the equations represented by a code mathematically (not 
physically) correct? (2) Are the algorithms that provide the numerical solution of the 



mathematical equations themselves mathematically correct? (3) Is the software 
implementation of these algorithms correct (that is, free of faults)? 

It is useful to think about verification testing and test problems in three ways. The first of 
these is the structure of the chosen test problems, that is, the logical principles underlying 
them. This addresses the important question of why given test problems are chosen, and 
how they are organized.   

The second is the specific construction of the test suite, or the specific means chosen by 
the code team for populating the test problem suite. Finding or developing new test 
problems that fully address the complexities of multiphysics codes is a tremendous 
challenge. 

The third aspect of importance for verification test problems is that of assessment, 
specifically the criteria that are applied for deciding whether or not the code has passed or 
failed a given test problem. Verification test problems are intended to be strong tests of 
the code. Therefore, assessment must be objective and rigorous, and well-documented. 

     

    Solution Verification 

Solution verification is quantification of the numerical error in a presented calculation. 
This answers a direct question: What is the error in a given calculation? Unfortunately, 
this is all but impossible to perform completely and rigorously for complex calculations. 
However, it can be partially and practically addressed by explicit discretization 
robustness and convergence studies, formal error estimation procedures, inference from 
test problem suites, and – possibly with some danger – inference from previous 
experience (i.e. judgment). Past experience can count for much if properly understood 
and presented. 

Code verification can be completely achieved, and calculations can still be inaccurate, 
due to poor discretizations (lack of converged calculations). More generally, verification 
of the correct functioning of algorithms cannot be partitioned as cleanly as we would like. 
It may be impossible to determine that algorithms are failing only on available test 
problems; the failures may appear only on large-scale problems for which there is no 
referent solution. In validation, explicit solution verification must be performed. It targets 
the numerical errors present in any comparison of a calculation with experimental data. 
The fundamental question that must be recognized, if not completely answered, is “Does 
the numerical error fatally corrupt the comparison with experimental data?” In the 
absence of acknowledgment of this problem, comparison with experimental data is 
irrelevant.  

Solution verification, in the absence of completely rigorous mathematics applicable to the 
full scope of the mathematical equations being solved, is essentially empirical. The key 
procedures that offer promise are: (1) a posteriori error estimation; (2) convergence 
studies; (3) numerical error models; (4) uncertainty quantification methods treating the 
numerical error as an epistemic (lack-of-knowledge) uncertainty.  



 

    Validation 

Experimental Validation 

Validation is fundamentally an experimental challenge. The equations that are solved in  
the codes used for nuclear energy system design are determined to be physically accurate 
(for a given application) through confrontation with experimental data having quality 
suitable for achieving the goals of validation. Because of limited resources, it is important 
to prioritize validation tasks. The logical desire to achieve complete validation of a 
complex code for a predictive complex multi-physics application must be balanced 
against these constrained resources. Key elements (mainly necessary, but not claimed to 
be sufficient) of experimental validation, are inevitably:  

1. Precise specification of the needed validation tests to optimize the alignment of 
validation calculations with executed experiments. This requires sophisticated two-
way communication between those who execute validation experiments and those 
who perform validation calculations.  Validation is weakened when experimental data 
are not validation quality. The expectation is that the experiments themselves have 
been subjected to verification and validation to provide the highest quality data. That 
is, experiment verification confirms that the experiment was executed correctly; 
experiment validation confirms that the correct experiment was executed.  

2. Performance of calculation verification for all validation calculations. 

3. Quantification of measurement/computational prediction comparisons, including 
quantified uncertainty. This requires (a) experimental error bars that encompass 
experimental uncertainty and (b) calculation error bars that encompass calculation 
uncertainty determined by a program of simulation uncertainty quantification (UQ) 

Validation calculations are calculations that are compared with validation quality 
experimental data for the purpose of inferring physical accuracy of the associated 
calculations.  Validation calculations have the specific purpose of enabling an assessment 
of the physical quality/physical accuracy/predictive capability of the code for the 
application represented by the chosen validation data. The experimental data that 
validation calculations are compared with must have specific characteristics in order to be 
effective in enabling validation. These characteristics include quantified experimental 
uncertainty, reproducibility and robustness of experimental data, and as directly 
comparable with calculations as possible.  

Experimental Error Bars 

Experimental “Error bars” is a euphemism for “experimental uncertainty quantification.” 
This is another problem that is unlikely to be completely and rigorously solved for 
complex experiments. The components of error bars are experimental bias and 
variability, and various factors enter into these components. The presentation of 
experimental error bars can literally be error bars of experimental data. To perform 



validation, some approximation to experimental “error bars” must be accomplished and 
presented to serve as a starting point for inference about the experimental-computational 
comparisons. Gross contributions to experimental uncertainty are diagnostic fidelity, 
experimental variability, and experimental bias. The more we expect to rigorously infer 
from a validation comparison, the more we need to understand about experimental error 
bars as quantifications of experimental uncertainty. For example is an experimental error 
bar a central tendency of an underlying Gaussian distribution, a statistical confidence 
interval, a representation of a uniform distribution, a possibility interval, or something 
else again?  

   Uncertainty Quantification 

The quantification of uncertainty (UQ) in large scale simulations is playing an 
increasingly important role in the process of code verification and validation.  If a 
simulation is to be quantitatively validated against the results from an experiment, it is 
crucial to understand the expected uncertainty in the output metrics of the calculation and 
also have a quantitative determination of the error bars associated with the output metrics 
from the experiment.  In practice, it becomes possible to assess the true accuracy of a 
simulation when the experimental uncertainty is less than the predicated uncertainty of 
the simulation.  Error estimates of uncertainty for the experiment usually require that an 
ensemble of experiments with controlled parameters be performed and known systematic 
errors are understood. 

Using a broad definition of UQ, one includes the topic of risk quantification. For risk 
quantification, one is not only interested in the uncertainty in the response metrics of 
some system, but also the impact of the response metrics on risk. Risk may be in the form 
of economic risk, human health risk, and other types of risk an enterprise may be 
concerned with. Being able to complete UQ is a necessary but not sufficient condition to 
complete risk quantification, which in addition requires a model that takes system 
response metrics and their uncertainties as input and produces as the output risk metrics 
and their uncertainties. In all likelihood, the risk model is itself uncertain, e.g. impact of 
radiation dose on human heath, so convolution of the probability distributions of the 
system response metrics with the probability distributions of the risk metrics is called for. 
A quite different example of risk quantification concerns probabilistic risk assessment 
(PRA), where now one is concerned with the likelihood of a given sequence of events 
occurring, including the uncertainty associated with the stated likelihood. In the 
following discussion of UQ, it will be implicitly assumed to include risk uncertainty for 
both of the instances noted above.  

The quantification of uncertainty in large scale simulations becomes particularly 
important when the simulation is used as a predictive tool in describing phenomena in a 
regime that is outside of the bounds of previous experimental tests or known 
observations. Examples of this circumstance for nuclear energy systems include accident 
analysis of nuclear power plants, predicting the effects of aging on materials in a hostile 
environment, and predicting long term high-level waste repository performance  Without 
experiments to check against code predictions in such regimes, it becomes essential to 
quantitatively evaluate the expected uncertainty in code output.  This task of UQ is 



complex in its undertaking for any simulation code that has non-linearly coupled multi-
physics algorithms as a representation of the underlying partial differential equations. 

In a complex multi-physics simulation code, many aspects of the physics may have a 
parametric representation or a choice of physics models each with their own degree of 
approximation.  The range or bounds of parametric settings in physical models and the 
choice of physics models represent a span of uncertainty in the simulation.  Typically, 
simulation codes are used with a particular choice of input physics models and perhaps a 
typical choice of parametric settings without any exploration of the full uncertainty in the 
simulation outcome.  Occasionally, a few different models are run in a few large scale 
simulations to uncover an estimation of the range or dispersion of output results and this 
gives some measure of the uncertainty, but it is usually woefully inadequate for 
determination of the full uncertainty in the simulation.  The problem of determination of 
uncertainty quantification is complex and is a topic for current research. 

To start, one must first identify the known sources of uncertainty in the simulation.  This 
may involve uncertainties associated with approximate models for the underlying 
physics, approximations in the numerical algorithms used; uncertainties associated with 
the settings of parameters that are used in physical models; settings that individual 
algorithms may have to work in a stable fashion; uncertainties associated with various 
levels of opacity tables, equation of state tables, and of course uncertainties associated 
with performing the simulation at a given spatial resolution when this resolution is not 
converged.  Considering that a multi-physics code embodies many components of 
coupled physics, the list of possible sources of simulation uncertainty can be quite large.  
Moreover, the uncertainties associated with these sources do not combine linearly, but 
may take on combinatorics of all possible settings.  Furthermore, uncertainties associated 
with various physics models within the code may cancel giving compensating effects. In 
a realistic multi-physics, multi-dimensional code, the number of parameters whose values 
may be bounded may be large and the problem of examining the full possible uncertainty 
resultant from all possible non-linear interactions among the uncertain components 
becomes exponentially complex. The problem of Uncertainty Quantification becomes 
one of reducing the computation of the full uncertainty space by a huge factor to become 
computationally tractable.  

The first step in an approach to Uncertainty Quantification is to identify all avenues of 
certainty for the simulation code.  Once this is established, some approach to the 
development of a sensitivity analysis must be developed to determine which components 
of uncertainty (algorithmic approximation, parameters, etc.) are the dominant drivers of 
the output metrics.  This is likely to be an iterative process that cannot be determined a 
priori.  In order to perform a sensitivity study to filter out those components of 
uncertainty that may not dominate the total output uncertainty, one is required to know 
the physically or mathematically reasonable bounds   of any set of parameters that 
represent a physical model.  The determination of physically reasonable bounds may 
require a considerable research effort and the quantification of such bounds may be 
possible with knowledge gained from experiments, analytic analysis and scientific 
judgment.  Given a first estimate of the sensitive drivers of the code’s response to 
parametric and physical model variation, the problem can now be viewed as navigating 



the uncertainty of these dominant drivers in an N dimensional space where each 
dimension is representative of a parameter, physical model, degree of approximation etc. 
to the underlying code physics.  In doing this, correlations within the N dimensional 
space must be accounted for, which has the potential of reducing the dimensionality. It 
becomes essential to sample the full N-dimensional space with a set of simulations that 
are representative of all dimensions of uncertainty within the bounds of those dimensions.  
Thus the problem of uncertainty quantification becomes one in which all identifiable 
uncertainties and their interaction with one another are run through the simulation code to 
give a predictable total output uncertainty in the code’s response to variation over 
acceptable bounds of all the components.  The uncertainty in code response to 
uncertainties in all the key components of the code can be expressed as the total 
uncertainty in the main metrics of code output that are objectives of the simulation.   

 

 Critical Issues and Challenges in V&V and UQ 
Verification 

Verification of computational science codes is dominated by testing. Testing remains the 
most essential contributor to the collection of verification evidence. Sufficient confidence 
in verification of software firmly rests upon the idea of sufficient testing. Inadequate 
testing increases the risk of malfunctioning software in important circumstances. 

Testing first and foremost depends upon having well-defined tests that a code passes or 
fails. While simple tests directed at individual code components can be devised that have 
strong assessment criteria, more complex tests that integrate larger parts of the physics 
and have greater numerical complexity are very difficult to devise, and can be extremely 
difficult to determine related assessment criteria. It is a critical problem in verification to 
devise such tests, as well as strong assessment criteria that create the verification 
consequences associated with the use of the test. 

Benchmarks for code verification are needed for a wide range of physics and engineering 
application with special emphasis on coupled multi-physics. Important areas where 
solutions to semi-analytic verification test problems are sorely needed include, but are not 
limited to: 

Component physics semi-analytic test problems and solutions in 1-, 2-, and 3-D. 
Examples include: hydraulics for single-phase/single component, single-phase/multi-
component, two-phase/single-component and two-phase/multi-component fluids; heat 
conduction through structures; structural response of structures to applied loads; isotopic 
composition with irradiation; neutron and gamma spatial interactions rates; and material 
thermal conductivity with applied irradiation and temperature.   

Coupled physics semi-analytic test problems and solutions in 1-, 2-, and 3-D. Examples 
of interest areas are: thermal/hydraulics, thermal/neutronics; thermal/materials; 
thermal/structures; neutronic/materials; hydraulic/neutronics; hydraulics/structures; 



hydraulics/materials; structures/materials; thermal/hydraulics/neutronics; 
thermal/hydraulics/materials; and thermal/hydraulics/neutronics/structures/materials.     

Semi-analytic test problems and solutions for neutron transport beyond flux-limited 
diffusion, characterized by angle dependent transport solutions. Radiation transport is 
among the limited class of physics problems where Monte Carlo simulation can provide 
meaningful test problem solutions. 

Research topics in the area of solution verification include: 

• Practical methods for estimating or bounding numerical errors associated with 
spatial and/or temporal discretizations, 

• Methods for estimating numerical errors associated with parameters that control 
the performance of numerical algorithms (e.g., artificial viscosity or hourglassing 
parameters), particularly in conjunction with other discretization errors, and 

• Practical methods for making validation or application decisions with under-
resolved models. 

• Approaches for solution methods based upon parallel asynchronous algorithms. 

 

Validation 

Well characterized validation experiments lie at the heart of simulation and model 
development. It is through these experiments that model accuracy can be assessed. 
Experiments can be generally classified into two types: (1) component (i.e. single physics 
phenomena); (2) integrated (i.e. coupled physics phenomena). The types of component 
and integrated validation experiments will vary from application to application. 

Component experiments: 

High quality experiments for component physics are needed for multi-scale, multi-
physics, multi-dimensional codes for nuclear energy systems. Due to the highly non-
linear interactions that occur between physical processes, it is important to ensure that the 
isolated physical process under consideration be assessed for its accuracy. With 
integrated experiments, it is difficult to distinguish an error in the coupling between 
component physics from an error in the individual components themselves. This is called 
a compensating error. Therefore, component physics experiments form a critical part of 
any validation process. A sample of component validation experiments that are desirable, 
include but are not limited to: single effect thermal/hydraulic; zero power reactor 
criticals; materials stress-strain, load deformation of structures; and chemical separations 
unit components.   

Even with the large number of existing experimental data that helps validate the 
computational physics models of nuclear energy systems, there is a real need for new 
experimental data that addresses component performance under severe accident 



conditions, aging of components, and fundamental parameters related to predictions of 
fuel performance. 

Integrated experiments: 

Ultimately, the applications under consideration tend to be multi-physics in nature. This 
means the validation of coupled/integrated physics models is of critical importance. In 
most codes, modularity of physics models means some type of operator splitting must be 
performed. Therefore, high quality well diagnosed experiments of integrated physics are 
needed for multi-scale, multi-physics, multi-dimensional codes. It is this class of 
experiments that ultimately any multi-physics code must be able to simulate.  Examples 
include but are not limited to: integral thermal/hydraulics for natural circulation systems; 
fuel performance in power reactors, integral 
thermal/hydraulics/neutronic/structural/materials under degraded core conditions. 

Validation Methodology 

Beyond interest in the validation of specific phenomena, there are a number of 
methodological needs to support validation in a manner that allows quantification of 
uncertainties in non-linear, coupled multi-physics nuclear energy system applications: 

• Advanced statistical methods for making quantitative measurement/prediction 
comparisons, particularly in the presence of non-negligible variabilities and 
uncertainties in diagnostics, initial conditions, boundary conditions, and other 
model inputs. 

• Tools to automate the process of quantitative validation. 
• Methodologies for validation inference through a hierarchy of validation 

experiments ranging from simple material characterization test through a series of 
experiments of increasing complexity. 

• Extrapolation inference from a validation parameter space to an application 
parameter space that is significantly outside the validation database 

• Statistical methods for validation when there is only a single well instrumented 
test. 

 
Uncertainty Quantification 

Intelligent statistical sampling techniques will be necessary to sample the full domain of 
an N-dimensional space of possible outcomes if other methods, e.g. adjoint method and 
automatic differentiation, are not appropriate.  If the dimensionality is high (N>10) then 
standard sampling techniques (e.g. Monte Carlo) will not be nearly efficient enough to 
cover the full domain of uncertainty with a number of sample calculations (likely in 2-D) 
that are computationally feasible.  Adaptive sampling procedures will have to be 
developed that will sample the full N-dimensional domain in an efficient enough way that 
clusters of sample simulations in those regions of the domain will capture where the 
sensitivity of the simulation response to variation in parameters, models, approximations 
etc. is highest.  Examining the code response to the full variation of all parameters in the 



physical models comprising the code by intelligent sampling of the N-dimensional 
parameter space will provide a total output certainty, but the full ensemble of models 
consisting of the combinations of the parameters and their variations may not satisfy data 
from available experiments.  It thus becomes necessary to find the ensemble of models 
and the parametric settings that comprise them that at least satisfy available data.  This 
requires an intelligent filtering of the full ensemble of models that cover all of the 
uncertainty space of the simulation.  Once such a filtered set of parametric settings 
becomes available that give rise to an ensemble of output calculations that satisfy known 
experimental data from different experimental regimes, techniques must then be 
developed to propagate this set of models to regimes for which no experimental data exits 
and use the ensemble set in this regime to predict the total uncertainty of output metrics 
for those regimes.   

The entire process of Uncertainty Quantification has important challenges that must be 
addressed.  The study of these issues is critical to any UQ component of a V&V program 
plan.  Many of these issues are under current exploration in the laboratories V&V 
programs. 

1. What approaches can be developed that allow for the determination of the 
dominant sensitivities in the code that drive the uncertainty in the output of a large 
scale simulation (particularly when the outputs are highly non-linear functions of 
the inputs). 

2. How do these approaches compare with one another in determining the dominant 
sensitivity drivers of output uncertainty? 

3. What approaches can be developed to propagate the uncertainty associated with a 
large number of uncertain parameters (N>>10) through the simulation to 
determine a prediction of the total uncertainty in the output metrics of large scale 
simulations.  How can this be accomplished in a computationally efficient way 
when dimensionality of uncertainty space is high (i.e. N>>10) and the 
computation cost of a code run is very high? 

4. What approaches can be developed to reduce the dimensionality of a high 
dimension UQ space (e.g. “The Curse of High Dimensionality”)? 

5. How sensitive is the final uncertainty of output code metrics to the input 
probability density functions of the settings of code parameters in the physical 
models? 

6. How many sample calculations are required to obtain the output uncertainty in a 
code simulation for an arbitrary number of uncertainty dimensions N?  How can 
the accuracy of the output uncertainty for a given number of sample simulations 
covering an arbitrary number of uncertainty dimensions be quantitatively 
determined? 

7. What techniques can be developed to determine if the ensemble of models that all 
fit known experimental data is complete? 



8. How do we V&V a UQ methodology? 

9. How do quantitatively determined output uncertainties compare when determined 
by different UQ methodologies? 

10. What experiments can be designed that can be used to test a UQ methodology?   

11. How can the confidence in a UQ methodology in the determination of the 
uncertainty in code output metrics be measured when possible experiments that 
could potentially test the methodology are not in the desired regime of code 
simulations? 

12. Are there benchmark problems that can be developed that represent a fair test of 
competitive methodologies for UQ and sensitivity analysis? 

13. What are practical methodologies for the aggregation and propagation of aleatory 
uncertainties, epistemic uncertainties, and combined aleatory and epistemic 
uncertainties? 

14.  How is UQ to be completed when parameter and other sources of uncertainties 
state condition dependent for transient problems? 

15.  How to efficiently propagate uncertainties through loosely coupled physics 
packages typical of operator splitting approaches? 

16.  How to propagate uncertainties through scales for multiscale problems? 

17.  How to gain computational efficiency advantage of multiphysics problems 
composed of a mixture of linear and nonlinear individual physics responses?  

18. How to complete UQ for PRA when using dynamic event sequences? 

19. What special problems present themselves with extending UQ analysis to 
exascale architectures where 10^6 ensemble simulations become feasible and 
enormous data sets results from the UQ analysis? 

20. How do we develop codes of the future that intrusively propagate uncertainty as 
the simulation evolves in time? 

 
 


